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Non-analytic finite-size corrections for the Heisenberg 
chain in a magnetic field with free and twisted boundary 
conditions 

H-P Ecklet and C J Hamer 
Department of Theoretical Physics, University of New South Wales, GPO Box 1, 
Kensington, NSW 2033, Australia 

Received 28 August 1990 

Abs t rac t .  The finite-size energy spectrum of the anisotropic Heisenberg chain in 
an extemal magnetic field is calculated for free and twisted boundary conditions. As 
with periodic boundary conditions, it is found that the spectra exhibit nowanalytical 
t e l w  which do  not fit into the form predicted on the basis of conformal invariance 
unless extra commensurability conditions between the sise of the system and the 
external field are introduced. Taking these conditions into account some scaling 
dimensions for associated models are derived. 

1. Introduction 

l l l c i  C U I L L q J L  U1 CUlllUl'lldl ayLlnlleLry grcauy c.Lllla'lccu LUC u'lu~raaa'rurry U, crlbl- 

cal two-dimensional classical and (l+l)-dimensional quantum systems (Belavin el n/ 
1984). The conformal anomaly e and the scaling dimensions of the primary conformal 
order parameters classify the system completely (Friedan el a/ 1984). These critical 
parameters of the bulk system are directly accessible through the finite-size effects 
of an affiliated system defined on a strip geometry of infinite length but finite width 

This observation led to  numerous studies, both numerical and analytical, of the 
finite-size effects of critical and conformal invariant systems. Much of the analytical 
work was concerned with the calculation of the conformal anomaly and scaling dimen- 
sions of models exactly solvable by the Bethe ansalr (BA) method. The prototype of 
such models is the X X Z  chain of N spins h with various boundary conditions (IIamer 
1986, de Vega and Karowski 1987, Woynarovich and Eckle 1987, Woynarovich 1987, 
Alcarar et  al 1987a,b, 1988, Hamer el a /  1987, Hamer and Batchelor 1988). 

Conformal invariance predicts a so called tower structure (Cardy 1986) for the 
spectrum of a one-dimensional quantum system, which is given in the most general 
form (Bogoliubov el a/ 1987) by 

'pL^ ------ L -L. --..L- 1 I_..  _... L,.. . -L .-.. I 11. . . -> . . .L . - , : - -  .I ..:L: 

(E!& e2 s! !98B, P.ff,eck 19%). 

2a 
P,(N' ,N-) -P ,= - ( s , + N -  N - N - ) + 2 D k F .  (1.2) 

t On leave of absence from lnstitut fiir Theoretische Physik, Universitiit Hannover. Appelstr. 2, 3000 
Hannover 1, Federd Republic of Germany. 
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T h e  ground-state energy Eo of the finite'system is given by (Blote et  a /  1986, AfReck 
1986) 

TfJF 
6 N  

Eo = N E ,  - -C 

Eo = N e ,  + f, - BvFc 
24N 

for periodic and free boundary conditions, respectively. 
Here E ,  is the ground-state energy density and j, the surface energy of the 

infinite system, e,  I, and s, are conformal anomaly, scaling dimensions and spins 
of the primary scaling operators, N* are non-negative integers describing excitations 
(Woynarovich 1987), D is the number of particles scattered from one Fermi point 
to the other, P is the momentum of the system and wF is the Fermi velocity. For 
conformal invariance to hold the  latter is required to be the same for all elementary 
excitations in the system (Woynarovich 1989). 

While the predictions of conformal invariance, given in equations (1.1)-(1.4) have 
been confirmed for a variety of models, it has been observed (Woynarovich e l  a1 1989 
(hereafter referred to as WET), Woynarovich 1989) tha t  models in the presence of exter- 
nal fields aquire terms in the  finite-size corrections of order N - '  which are dependent 
on N itself in a non-analytic way, therefore not fitting into the  concept of conformal 
invariance. Conformal invariance can only be restored if additional commensurabil- 
i ty conditions are imposed. The  commensurability conditions are connected with the 
consistent definition of a continuum limit of the lattice model which is indispensable 
for a strict applicability of the  concepts of conformal invariance. These aspects have 
been discussed in detail in WET and we shall not repeat the arguments here. 

Alternatively these non-analytic terms have been interpreted as electric and  mag- 
netic defects in the  incommensurate phase of a two-dimensional model generated from 
the  XXZ chain (Park and Widom 199Oa,b). 

Similar effects have also been observed in XXZ chains with Dzyaloshinski-Moriya 
interactions (Alcaraz and Wreszinski 1990), the one-dimensional Bose gas with peri- 
odic (WET) and free (reflecting wall) boundary conditions (Berkovich and Murthy 
1988b) and most recently the  chiral Potts chain (Albertini and  McCoy 1990). 

The  main object of the present work is to show that the effect of external fields in 
generating non-analytic finite-size corrections to the energy spectra of integrable mod- 
els is not sensitive to the boundary conditions assumed, but is also present for free and 
twisted boundary conditions. Therefore it is also possible to generalize surface scaling 
dimensions and scaling dimensions associated with twisted boundary conditions to the 
case of non-vanishing external fields. 

In the following (section 2) we shall show tha t  the observation of non-analytic 
terms in the finite-size energy spectra remains true for boundary conditions different 
from periodic ones. In particular we shall show the presence of non-analytic terms in 
the finite-size spectrum of the  X X Z  chain with external magnehic field and free well 
as twisted boundary conditions. In section 3 we shall discuss the non-analytic terms 
briefly for the ground-state energy and evaluate the finite-size spectra to infer surface 
scaling dimensions and  scaling dimensions of associated Ashkin-Teller and q-state 
Potts quantum chains, the latter related to twisted boundary conditions. Section 4 
gives a brief summary. 

From the previous work of W E T  (see also Berkovich and Murthy 1988a.b) it is 
clear that  our results can easily be modified and applied to the one-dimensional Bose 
gas with a delta-function pair potential. 
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2. Finite-size energy  spectrum 

The anisotropic spin-; Heisenberg chain of N sites with anisotropy cosy (0 5 7 < r) 
in an external magnetic field h (0 5 h 5 1 +cosy) and with surface fields p and p' a t  
the chain ends 

1 
N' 

x= ~ ( - S , Z S , Z + l - S j Y S j Y + 1 + c ~ ~ y S j 2 S ~ + 1 - h S ~ ) + p S ~ + p ' S ~ - ~ N ' ( ~ ~ ~ ~ - ~ ~ ~  
j =  1 

(2.1) 

is solvable by the Bethe ansatz method. 

length N .  

conditions, the latter being defined through 

The following special cases of (2.1) have recently been investigated for finite chain 

(i) Free (N' = N - l), periodic and twisted (N' = N ,  p = p' = 0) boundary 

without magnetic field ( h  = 0) (Woynarovich and Eckle 1987, Alcaraz et a/  1987a,b, 
1988, Hamer e t  a /  1987, Hamer and Batchelor 1988). These boundary conditions, 
together with different choices for the surface fields and twist angle have thereby been 
used to relate (2.1) to Potts and Ashkin-Teller quantum chains and to infer the surface 
critical behaviour of these models. 

(ii) Periodic boundary conditions without surface fields ( p  = p' = 0), but in the 
presence of a magnetic field h # 0 (WET). It way observed that, the magnet,ic field, 
rendering the number of particles of the ground-state variable, resulted in a structure 
of the finite-size energy spectrum which was of conformal form only after certain 
commensurability conditions between the magnetization of the system and the chain 
length were obeyed. This contrasted the case of zero magnetic field where the ground 
state is always given by magnetization p = $ and where conformal invariance could 
immediately be confirmed. 

In the following we consider the full Hamiltonian (2.1) with h # 0 and free and 
twisted boundary conditions, respectively. 

2.1. Free boundary conditions 

An eigenstate of (2.1) for free boundary conditions containing M spin waves is com- 
pletely described by the M parameters X j  (j = 1 , .  . . , M )  satisfying the set of algebraic 
equations (the BA equations) (Hamer e l  a/ 1987) 

M 

Z N Q ( X ~ , ~ ~ ) = ~ ~ I ,  - Q ( X ~ , ~ ) - Q ( A ~ , ~ ' ) +  ( q x j  - x , , ~ ) + Q ( x ~  + x , , ~ ) )  
k l , t # j  

(2.3) 
where 

2i,. - p - A - ei" 2i,., - p' - A - ei-( 
e -  e -  

( p  - A)el-( - 1 (p' - A)el-( - l 
and 

O(X,7)  = 2tan-'(cotytanhX). 
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Due to the non-zero magnetic field, the number of spin waves M # N/2 for the ground 
state, but is rather a free parameter to be fixed by the condition, that the energy 

€I-P Eckle and C J Hamer 

sin' y 

j=1 

be minimal with respect to  M .  
The quantum numbers I, are given by 

(2.7) Ij = j  j =  1, ..., M 

(Gaudin 1971, Alcaraz et  a/ 1987b). 
It should be noted that for free boundary conditions the BA wavefunction has  the 

form of standing waves (Gaudin 1971, Alcaraz et a/ 1987b), therefore the total mo- 
mentum is always zero. This excludes the possibility of a non-symmetric distribution 
of roots, as considered in WET for periodic boundary conditions. 

In the usual way we introduce a density of roots uN(A) by 

where = Xi. Application of the  Euler-Maclaurin formula to'(2.9) 

(2.10) 

yields the linear integral equation 

- 1 (dK(X - A) - dK(X + A ) )  
48NZu,(A) dX dX 

A 
- J - A  K ( X  - X')u,(X')dX'} 

where i C ( X )  = W(X,yj is the icernei oi  the integrai equation. 
The integration boundary A is determined by the sum rule 

(2.11) 

/ loN(X)dA = - 2M +U(N-' )  
N 

(2.12) 
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Due to its linearity, the integral equation (2.11) can be solved formally by introducing 
three new functions which themselves are defined through linear integral equations 

@‘(X,y/2) - /A IC (X  - X‘)u(X’lA) dX‘ (2.13) 
- A  

@‘(X,r) +@‘(A,r’) + @ ‘ ( x , ~ ) + ~ @ ‘ ( z x , Y )  

(2.14) 

(2.15) 

- [l IC (X  - X’)r(XlA)dX‘ 

- 1, I C ( X  - X’)p(XlA) dX’ 

The formal solution of (2.11) then reads 

(2.16) 1 1 a d 4  = 4 A I A ) +  ,r(XlA) + 24N2a,(A) b(XlA) + p(-XlA)l. 

Application of the Euler-Maclaurin formula to the energy (2.6) leads to 

1 dco(A) + E ,  (2.17) E = 

E o = N ( - $ ~ o ( O ) + p + p ‘ )  (2.18) 

A / eO(X)uN(X)  dX - - A  24NaN(A) dA 

where the hare energy is given by 

(2.19) s i 2 7  
cosh 2X - cos 7 ’ 

co(X) = h - 

From (2.16) we obtain 

(2.20) 

with 

c($) = ~ ~ U ( X ~ A ) E , ( X ) ~ X  (2.21) 

(2.22) 

.(A) = - (2.23) 
dA 

where, of course, .(A) is also a function of M / N  via A = A ( M / N ) .  We now minimize 
E = E ( M / N ) ,  equation (2.20), with respect to M / N ,  assuming p = p ( h )  to be the 
value where the minimum is taken in the limit N + 00. By expanding the energy 
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in (2.20) around the minimum, we arrive at the following result for the finite-size 
energy 

H-P Eckle and C J Hamer 

(2.24) 

(2.25) 

where we have used (2.16) to order N-' to approximate u N ( A )  in (2.20). The  consid- 
eration of particle-hole excitations (WET, Woynarovich 1989) justifies the definition of 
two Fermi velocities in (2.24) 

Eo e ,  = C(P(h) )  + 7 

(2.26) 

(2.27) 

Note tha t  these definitions differ by a factor of f from the definition of the Fermi 
velocities for periodic boundary conditions (WET, Woynarovich 1989). This is due  to 
the differences in the BA equations in the cases of free and periodic (or twist,ed, see 
below) boundary conditions. 

T h e  quantity <(A),  called dressed charge (Korepin 1979, Bogoliubov et ai 1986), 
is given by 

C(A) = 1 + 1 1" K ( X ~ A )  dX 
- A  

(2.28) 

where ~(Xlh) is defined by  the integral equation 

(2.29) 
A 

[ K ( X  - A )  + K ( X  + A)] + K ( X  - X')K(X'~A) dX' 

2.2, Twisted boundary conditions 

In the  case of twisted boundary conditions the BA equations to be treated for A t  spin 
waves described by the parameters X j  ( j  = 1, .  . . , M )  are (Hamer et a /  1987) 

the quantum numbers lj  being given by 

(2.31) 1 
2 I j  = - - ( M  + 1) +j j = 1 , .  . . , M. 

Again M is a free parameter t o  be determined later by minimization of the energy 

(2.32) sin2 y 

cosh 2Xj - cosy 
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Instead of quantum numbers (2.31) one could also introduce a non-symmetrical dis- 
tribution of numbers Ij, i.e. M numbers I, distributed equidistantly betwcen two 
numbers I- and I+ (WET), resulting from excitations of particles from the left Fermi 
point to the right one. However, we shall see that the asymmetry already introduced 
through the twist angle 4 plays a similar role and the generalization including a non- 
symmetrical distribution of numbers I j  will be obvious, 

As in the case of free or periodic boundary conditions we introduce a root density 
uN(X) which satisfies a sum rule 

M 
N l' rN(X) dX = - + O ( N - ' )  (2.33) 

and which by application of the Euler-Maclaurin formula can be transformed to 
order N-' in a linear integral equation. The non-symmetrical integration bound- 
aries in (2.33) are due to the translation of quantum numbers I j  by the twist angle 4. 
This non-symmetry can be cast in a second sum rule 

(2.34) 

These sum rules together with the integral equation for u,(X), which is formally 
identical to the one obtained for periodic boundary conditions (see WET), form a 
closed system and determine completely the st,ate under consideration. 

If we replace D by (-+/2?r) in the calculation of W E T  we can immediately copy 
the results from that work, namely for the energy 

and for the momentum 

(2.36) 

Obviously we arrive at  the general case discussed above by replacing the k r m  depend- 
ing on the twist angle by 

Za + P(M,$+) = ---M--. 
N 2n 

in the energy (2.35) and 

(2.37) 

(2.38) m 
2a 

--+D 

in the momentum (2.36) 
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3. Ground-state energy and sca l ing  dimensions 

We are especially interested in the ground-state energy Eo(N) ,  which can be read 
off (2.24) and (2.35) 

12 ,U,. 
E o ( N )  = N c ,  - [I - -(M - P ( ~ ) N ) ~ ]  + f, 4- 5 2 4 N  F2(A) 

for free boundary conditions and 

2 

Eo(N) = N c ,  - ?!!!E [ l -  -(M 3 - P ( ~ ) N ) ~  - 12EZ(A)L] 
6 N  €'(A) 4r2 (3.2) 

for twisted boundary conditions. 

anomaly, which is c = 1 in the  field free case, has to be  modified to read 
One would now be  tempted to infer from (3.1) and (3.2) tha t  the conformal 

in the case of free boundary conditions and 

(3.3) 

in the case of twisted boundary conditions, where we have set m = M - pN. This 

tha t  the value of c in (3.3) and (3.4) depends on the chain length N via m. = m ( N )  
in a non-analytic way, as already discussed in WET. This is clearly against the  spirit 
of the  finite-size approach to conformal invariance (Cardy 1986), where the crucial 
point is to infer the bulk, i.e. site-independent, conformal or critical parameters of a 
system from its finitesize behaviour. Therefore we would like to proposet the following 
interpretation: the energies (5.1) and (3.2) &:e sti!! no? the ?:.'e ground-state energiee 
of the system, bu t  still exhibit excitations in the form of certain defects. Only if these 
defects have been removed from the finite system by the  commensurability procedure 
discussed in WET, the lattice system aquires a conformal spectrum and is of a form 
allowing a conformal invariant contiuum limit. Then we have c = 1 and also scaling 
dimensions which are independent of the system size. However, the discussion of the 
possible defect structure znd the  re!eted incommensxrate phzses of mode!s genera!.ed 
by the X X Z  chain is of its own value. 

Considering the finite-size energies (2.24) and (2.35), we are now i n  a posit,ion to 
generalize the results of Hamer a,nd Uatchelor (1988) for certain scaling dimensions 
to the case of a non-vanishing magnetic field. For this purpose we bricfly rephrase 
the discussion of WET, how to remove the non-analytic terms i n  the finite-size energy 
spcctrs. Fnr &?ai!$ of ?he interpreta!lon of this procedure, see WET. 

In WET it was argued tha t ,  in order to recover the conformal structure of the 
spectra, one has to choose the value of the magnetic field h in such a way tha t  the 
magnetization aquires values p ( h )  = p / 9  with relative prime integers p and 9. The 

t We would like to thank Professor M N Barber for clarifying discussions about this point. 

"-:-.t nC.r:a...:c " A  ..-"" +..A :.. D.-lr " " 2  lX7:A- -  / Inon- I.\ U -.., ~ .,-- & -I.-.. ...- 
&,""'U "1 " L r w  10 a"""LaL.F" L11 1 a k a  all" "*l""LLL \ '2D"L",", .  I I " I I C " S L (  "LlC L l L U D L l  " " I r l l c  
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number of spins in the chain has  then to be chosen commensurable with these values 
of the magnetization, i.e. N = qN’ with an  integer NI.  To obtain the true energy 
minimum, i.e. the true ground state, the number of spin waves then has to  he chosen 
MO = pN’ .  

The general form predicted for the energy gap by conformal invariance (Cardy 
1984) is 

X I  

N AE= nuF- (5.5) 

for free boundary conditions, where zs is the surface scaling dimension. For periodic 
or twisted boundary conditions, the corresponding relation is (Cardy 1984) 

X 
AE = 2mF 

1 .  

with the scaling dimension z of the associated scaling operator. 

by the described procedure from the finite-size energy spectra (2.24) and (2.35). 
Now we calculate the finite-size energy gaps above the true ground state obtained 

For free boundary conditions we obtain from (2.24) 

with AM = A4 - M O ,  the number of spin waves excited above the ground state value 
MO, revealing the surface scaling dimensions 

In the case of twisted boundary conditions, Hamer and Batchelor (1988) have 
identified various scaling dimensions for different choices of d,  which are associated 
with the scalingoperators of Ashkin-Teller and 9-state Potts models. From our general 
results for the finite-size energy spectrum (2.35) we are able to  generalize their results 
for non-vanishing magnetic field. 

Alcaraz et a l  (1987a, 1988) andivan Gehlen and Rittenherg (1’387) have shown 
from numerical calculations that the gaps 

E(AM = 1 , d  = fn) - E ( A M  = 0,d = 0) 

E(AM = l,Q = zr )  - E ( A M  = O,$ = 0) 
and 

(3.9) 

(3.10) 

are associated with the scaling dimensions of the spin-: and spin-! para-fermion 
operators for the associated Ashkin-Tcller model with periodic boundaries. These 
quantities are given in our case of h # 0 from (2.35), (3.9) and (3.10) by 

\ 

(3.11) 

and 
1 9E2(A) +- 

xpf (i) = (2((A))2 16 
(3.12) 
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generalizing the analytic findings of Hamer and Batchelor (1988) for zero magnetic 
field. 

The scaling dimension of the magnetic operator of the q-state Potts model with 
periodic boundary conditions (den Nijs 1983, Dotsenko 1984) can he obtained from 
the gap (Alcaraz et al 1987a, 1988) 

H-P Eckle and C J Hamer 

E ( A M  = 0,Q = T )  - E ( A M  = 0,Q = 27) (3.13) 

and have been calculated analytically by Hamer and Batchelor with cosy = 
(1988) for h = 0. For non-zero magnetic field we obtain from (2.35) and (3.13) 

(3.14) 

The para-fermion operators of the q-state Potts model with spin s = a/q where 01 = 
1,.  . . , q-1 (Fradkin and Kadanoff 1980, Nienhuis and Knops 1985) have corresponding 
mass gaps (Alcaraz el 01 1988) 

E ( A M  = 1 , Q  = 2~01/q)  - E ( A M  = 0,4 = 2y). (3.15) 

The generalization of the results of Hamer and Batchelor (1988) to non-zero magnetic 
field can be read off (2.35) and (3.15) to  be 

(3.1G) 

in the iimit h - 0 iiogoiiubov ei ai jiS86j have shown that the dressed charge is 
given by 

= J2(. R - y) 
(3.17) 

/-..,. "1"- ELL- v.. ~nnn\ &L---C--- - 1 1  8 , -  -P U -.--I D - ~ ~ L - L -  ,moo\ 
("CC OlDY 11O11111 -11" 1" '""U,, LIIIOL~LUIC: a,, L O D U l U D  U, IlalllcL a,," "IL.L, ICIUI (Iaoo,, 

valid in this limit, can easily he recovered from our general formulae for non-zero 
magnetic field. 

Scaling dimensions for the X X Z  chain in a magnetic field and the one-dimensional 
Bose gas with chemical potential, both with periodic boundary conditions, have al- 
ready been calculated by Bogoliubov et al (1986), Berkovich and Murtliy (1988a,h) 
and WET. Berkovich and Murthy (1988h) have also calculated surface scaling dimen- 
sions for the one-dimensional Bose gas with free (reflecting wall) boundary conditions, 
hut without chemical potential, observing a fractional number of particles which they 
attribute to  a defected ground state of the system. They then further minimize the 
ground state by subtracting this fractional number of particles, a procedure in perfect 
accordance to  the one we described above for the XXZ chain. 

4. Summary 

The main result of the present paper is to  have demonstrated that the non-analytic 
finite-size effects in the energy spectrum of the X X Z  chain are not sensit,ive to  the 
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boundary conditions assumed. In fact the finite-size energy, given in (2.24) and (2.35), 
has the same structure for periodic (see WET), free and twisted boundary conditions. 

However, it is interesting to  observe that in the case of free boundary conditions, 
there are no non-analytic corrections to  the surface energy. Furthermore the twist 
angle 4 of twisted boundary conditions plays formally the same role as the number of 
particles D scattered from one Fermi point to  the other. 

In WET it was emphasized and also demonstrated in the particular example of the 
X-X chain in a magnetic fieid that the non-anaiytic finite-size eKects are not conse 
quences of the Bethe-ansatz method, but are present in any system where the ground 
state depends on external fields such as  chemical potential or magnetic field. This 
observation of course remains true if one investigates different boundary conditions. 
I t  is a n  easy exercise to  redo the calculations of appendix 1 of WET for the example of 
the XX chain with the free and twisted boundary conditions discussed in the present 
work. 

As an application of our calculations and if the commensurability conditions nec- 
essary for the spectrum to be of conformal form were obeyed, we were able to  infer a 
number of scaling dimensions for the case of a non-vanishing external field. These scal- 
ing dimensions were associated with the boundary conditions we used, namely surface 
scaling dimensions for the free boundaries and various other scaling dimensions, which 
were accessible by appropriate choices of the twist angle 4 in the twisted boundary 
conditions and which relate to  mappings of the X X Z  chain to  Ashkin-Teller and q- 
state Potts quantum chains. We expect that it should be possible to  calculate scaling 
dimensions also for other integrable models in external fields. 
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